57 research outputs found

    The Cognitive Atlas: Employing Interaction Design Processes to Facilitate Collaborative Ontology Creation

    Get PDF
    The Cognitive Atlas is a collaborative knowledge-building project that aims to develop an ontology that characterizes the current conceptual framework among researchers in cognitive science and neuroscience. The project objectives from the beginning focused on usability, simplicity, and utility for end users. Support for Semantic Web technologies was also a priority in order to support interoperability with other neuroscience projects and knowledge bases. Current off-the-shelf semantic web or semantic wiki technologies, however, do not often lend themselves to simple user interaction designs for non-technical researchers and practitioners; the abstract nature and complexity of these systems acts as point of friction for user interaction, inhibiting usability and utility. Instead, we take an alternate interaction design approach driven by user centered design processes rather than a base set of semantic technologies. This paper reviews the initial two rounds of design and development of the Cognitive Atlas system, including interactive design decisions and their implementation as guided by current industry practices for the development of complex interactive systems

    Executive Function in Pediatric Bipolar Disorder and Attention-Deficit Hyperactivity Disorder: In Search of Distinct Phenotypic Profiles

    Get PDF
    Often, there is diagnostic confusion between bipolar disorder (BD) and attention-deficit hyperactivity disorder (ADHD) in youth due to similar behavioral presentations. Both disorders have been implicated as having abnormal functioning in the prefrontal cortex; however, there may be subtle differences in the manner in which the prefrontal cortex functions in each disorder that could assist in their differentiation. Executive function is a construct thought to be a behavioral analogy to prefrontal cortex functioning. We provide a qualitative review of the literature on performance on executive function tasks for BD and ADHD in order to determine differences in task performance and neurocognitive profile. Our review found primary differences in executive function in the areas of interference control, working memory, planning, cognitive flexibility, and fluency. These differences may begin to establish a pediatric BD profile that provides a more objective means of differential diagnosis between BD and ADHD when they are not reliably distinguished by clinical diagnostic methods

    Decoding Continuous Variables from Neuroimaging Data: Basic and Clinical Applications

    Get PDF
    The application of statistical machine learning techniques to neuroimaging data has allowed researchers to decode the cognitive and disease states of participants. The majority of studies using these techniques have focused on pattern classification to decode the type of object a participant is viewing, the type of cognitive task a participant is completing, or the disease state of a participant's brain. However, an emerging body of literature is extending these classification studies to the decoding of values of continuous variables (such as age, cognitive characteristics, or neuropsychological state) using high-dimensional regression methods. This review details the methods used in such analyses and describes recent results. We provide specific examples of studies which have used this approach to answer novel questions about age and cognitive and disease states. We conclude that while there is still much to learn about these methods, they provide useful information about the relationship between neural activity and age, cognitive state, and disease state, which could not have been obtained using traditional univariate analytical methods

    Decoding Developmental Differences and Individual Variability in Response Inhibition Through Predictive Analyses Across Individuals

    Get PDF
    Response inhibition is thought to improve throughout childhood and into adulthood. Despite the relationship between age and the ability to stop ongoing behavior, questions remain regarding whether these age-related changes reflect improvements in response inhibition or in other factors that contribute to response performance variability. Functional neuroimaging data shows age-related changes in neural activity during response inhibition. While traditional methods of exploring neuroimaging data are limited to determining correlational relationships, newer methods can determine predictability and can begin to answer these questions. Therefore, the goal of the current study was to determine which aspects of neural function predict individual differences in age, inhibitory function, response speed, and response time variability. We administered a stop-signal task requiring rapid inhibition of ongoing motor responses to healthy participants aged 9–30. We conducted a standard analysis using GLM and a predictive analysis using high-dimensional regression methods. During successful response inhibition we found regions typically involved in motor control, such as the ACC and striatum, that were correlated with either age, response inhibition (as indexed by stop-signal reaction time; SSRT), response speed, or response time variability. However, when examining which variables neural data could predict, we found that age and SSRT, but not speed or variability of response execution, were predicted by neural activity during successful response inhibition. This predictive relationship provides novel evidence that developmental differences and individual differences in response inhibition are related specifically to inhibitory processes. More generally, this study demonstrates a new approach to identifying the neurocognitive bases of individual differences

    The Cognitive Atlas: Toward a Knowledge Foundation for Cognitive Neuroscience

    Get PDF
    Cognitive neuroscience aims to map mental processes onto brain function, which begs the question of what “mental processes” exist and how they relate to the tasks that are used to manipulate and measure them. This topic has been addressed informally in prior work, but we propose that cumulative progress in cognitive neuroscience requires a more systematic approach to representing the mental entities that are being mapped to brain function and the tasks used to manipulate and measure mental processes. We describe a new open collaborative project that aims to provide a knowledge base for cognitive neuroscience, called the Cognitive Atlas (accessible online at http://www.cognitiveatlas.org), and outline how this project has the potential to drive novel discoveries about both mind and brain

    Pleiotropic meta-analysis of cognition, education, and schizophrenia differentiates roles of early neurodevelopmental and adult synaptic pathways

    Get PDF
    Susceptibility to schizophrenia is inversely correlated with general cognitive ability at both the phenotypic and the genetic level. Paradoxically, a modest but consistent positive genetic correlation has been reported between schizophrenia and educational attainment, despite the strong positive genetic correlation between cognitive ability and educational attainment. Here we leverage published genome-wide association studies (GWASs) in cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly associated loci to be identified and characterized. Specifically, we identified subsets of variants associated in the expected (“concordant”) direction across all three phenotypes (i.e., greater risk for schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with variants that demonstrated the counterintuitive (“discordant”) relationship between education and schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis revealed 235 independent loci associated with cognitive ability, education, and/or schizophrenia at p < 5 × 10−8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the input GWASs. Many of these have been validated by larger, more recent single-phenotype GWASs. Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able to dissociate two distinct biological mechanisms—early neurodevelopmental pathways that characterize concordant allelic variation and adulthood synaptic pruning pathways—that were linked to the paradoxical positive genetic association between education and schizophrenia. Furthermore, genetic correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of schizophrenia but also to the broader biological dimensions implicated in both general health outcomes and psychiatric illness

    Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics

    Get PDF
    Broad-based cognitive deficits are an enduring and disabling symptom for many patients with severe mental illness, and these impairments are inadequately addressed by current medications. While novel drug targets for schizophrenia and depression have emerged from recent large-scale genome-wide association studies (GWAS) of these psychiatric disorders, GWAS of general cognitive ability can suggest potential targets for nootropic drug repurposing. Here, we (1) meta-analyze results from two recent cognitive GWAS to further enhance power for locus discovery; (2) employ several complementary transcriptomic methods to identify genes in these loci that are credibly associated with cognition; and (3) further annotate the resulting genes using multiple chemoinformatic databases to identify "druggable" targets. Using our meta-analytic data set (N = 373,617), we identified 241 independent cognition-associated loci (29 novel), and 76 genes were identified by 2 or more methods of gene identification. Actin and chromatin binding gene sets were identified as novel pathways that could be targeted via drug repurposing. Leveraging our transcriptomic and chemoinformatic databases, we identified 16 putative genes targeted by existing drugs potentially available for cognitive repurposing.Peer reviewe
    corecore